Action Recognition with Joints-Pooled 3D Deep Convolutional Descriptors
نویسندگان
چکیده
Torso joints can be considered as the landmarks of human body. An action consists of a series of body poses which are determined by the positions of the joints. With the rapid development of RGB-D camera technique and pose estimation research, the acquisition of the body joints has become much easier than before. Thus, we propose to incorporate joint positions with currently popular deep-learned features for action recognition. In this paper, we present a simple, yet effective method to aggregate convolutional activations of a 3D deep convolutional neural network (3D CNN) into discriminative descriptors based on joint positions. Two pooling schemes for mapping body joints into convolutional feature maps are discussed. The jointspooled 3D deep convolutional descriptors (JDDs) are more effective and robust than the original 3D CNN features and other competing features. We evaluate the proposed descriptors on recognizing both short actions and complex activities. Experimental results on real-world datasets show that our method generates promising results, outperforming state-of-the-art results significantly.
منابع مشابه
Two-Stream 3D Convolutional Neural Network for Skeleton-Based Action Recognition
It remains a challenge to efficiently extract spatialtemporal information from skeleton sequences for 3D human action recognition. Although most recent action recognition methods are based on Recurrent Neural Networks which present outstanding performance, one of the shortcomings of these methods is the tendency to overemphasize the temporal information. Since 3D convolutional neural network(3D...
متن کاملPooling the Convolutional Layers in Deep ConvNets for Action Recognition
Deep ConvNets have shown its good performance in image classification tasks. However it still remains as a problem in deep video representation for action recognition. The problem comes from two aspects: on one hand, current video ConvNets are relatively shallow compared with image ConvNets, which limits its capability of capturing the complex video action information; on the other hand, tempor...
متن کاملHand Gesture Recognition from RGB-D Data using 2D and 3D Convolutional Neural Networks: a comparative study
Despite considerable enhances in recognizing hand gestures from still images, there are still many challenges in the classification of hand gestures in videos. The latter comes with more challenges, including higher computational complexity and arduous task of representing temporal features. Hand movement dynamics, represented by temporal features, have to be extracted by analyzing the total fr...
متن کاملExploiting deep residual networks for human action recognition from skeletal data
The computer vision community is currently focusing on solving action recognition problems in real videos, which contain thousands of samples with many challenges. In this process, Deep Convolutional Neural Networks (D-CNNs) have played a significant role in advancing the state-of-the-art in various vision-based action recognition systems. Recently, the introduction of residual connections in c...
متن کاملDMM-Pyramid Based Deep Architectures for Action Recognition with Depth Cameras
We propose a method for training deep convolutional neural networks (CNNs) to recognize the human actions captured by depth cameras. The depth maps and 3D positions of skeleton joints tracked by depth camera like Kinect sensors open up new possibilities of dealing with recognition task. Current methods mostly build classifiers based on complex features computed from the depth data. As a deep mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016